5分六合_5分六合
5分六合2023-09-12

5分六合

蔬菜生吃还是熟吃?你是哪一派?******

  2022版《中国居民膳食指南》推荐成年人每日摄入300-500克的蔬菜,包括嫩茎、叶、花菜类,根菜类,鲜豆类,茄果瓜菜类,葱蒜类,菌藻类及水生蔬菜类等,其中深色蔬菜(深绿色、深黄色、紫色、红色等有颜色的蔬菜)要占一半以上。最近出现了两大门派:生吃派和熟吃派,两种吃法各有千秋,今天咱们就给二者来一个“功力”大比拼。

  营养价值

  生吃派

  生吃可以最大程度地保护蔬菜中的营养素不被破坏,身体可以相对全面地获取其中的营养成分。比如维生素C就是典型的不耐热营养素,加热会使大部分被破坏;另外,洋葱等葱蒜蔬菜中含有大蒜素等活性成分,具有杀菌抑菌、刺激食欲、帮助消化等作用,但炒熟后的这一成分会失活。

  熟吃派

  加热可以提高蔬菜中的生物活性物质含量,比如番茄在88℃的温度下烹饪30分钟后,可以使番茄红素的含量上升35%,因为高温破坏了植物厚厚的细胞壁,促进番茄红素的溶出;同样胡萝卜在煮熟后也可以使β-胡萝卜素的含量增加20%,与油脂类一起烹饪还能进一步促进β-胡萝卜素的吸收。

  安全性

  生吃派

  生菜、白菜、黄瓜、西红柿、紫甘蓝、洋葱是非常适合生吃的蔬菜,可以加入沙拉酱、红油以及少许调料来调味,相对于熟制蔬菜,做到了少油少盐,有助于预防多种慢性疾病的发生。

  熟吃派

  有些蔬菜不能生吃,容易引起中毒:比如豆角、蚕豆、毛豆等蔬菜含有蛋白酶抑制剂、红细胞凝集素、皂甙等成分,必须经过高温烹饪破坏这些物质才能食用,稍不注意就可能导致中毒;还有富含草酸的蔬菜(菠菜、苋菜、欧芹等),须经过高温水煮去掉草酸,否则大量草酸会在机体内和钙结合成草酸钙,影响钙的吸收。

  “生吃派”和“熟吃派”可谓不分伯仲,不同的蔬菜适合的吃法是不一样的。但不管是生吃还是熟吃,都有需要注意的安全食用注意事项,下面列出来供大家参考。

  不管生吃熟吃

  这些安全隐患要注意

  1.吃前一定要进行彻底的清洗和必要的杀菌处理,避免蔬菜表面附着的一些寄生虫、致病菌和农药残留导致人体出现中毒或者是腹泻。

  2.避免加工过程中营养素的流失,建议先洗后切,清洗时避免长时间浸泡在水里;急火快炒,烹调时可加少量淀粉,有效保护维生素C。

  文/王欢(注册营养师中国好营养科普达人)

科学家成功合成铹的第14个同位素******

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

  近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

  此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

  不断进行探索,再次合成铹同位素

  铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

  质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

  103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

  截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

  目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

  通过熔合反应,形成新的原子核

  铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

  “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

  在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

  “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

  超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

  拓展新的领域,推动超重核理论研究

  由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

  此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

  研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

  “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

中国网客户端

国家重点新闻网站,9语种权威发布

5分六合地图